One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance
نویسندگان
چکیده
High aspect ratio of WO3-loaded TiO2 nanotube arrays have been successfully synthesized using the electrochemical anodization method in an ethylene glycol electrolyte containing 0.5 wt% ammonium fluoride in a range of applied voltage of 10–40 V for 30 min. The novelty of this research works in the one-step formation of WO3-loaded TiO2 nanotube arrays composite film by using tungsten as the cathode material instead of the conventionally used platinum electrode. As compared with platinum, tungsten metal has lower stability, forming dissolved ions (W6+) in the electrolyte. The W6+ ions then move towards the titanium foil and form a coherent deposit on titanium foil. By controlling the oxidation rate and chemical dissolution rate of TiO2 during the electrochemical anodization, the nanotubular structure of TiO2 film could be achieved. In the present study, nanotube arrays were characterized using FESEM, EDAX, XRD, as well as Raman spectroscopy. Based on the results obtained, nanotube arrays with average pore diameter of up to 74 nm and length of 1.6 μm were produced. EDAX confirmed the presence of tungsten element within the nanotube arrays which varied in content from 1.06 at% to 3.29 at%. The photocatalytic activity of the nanotube arrays was then investigated using methyl orange degradation under TUV 96W UV-B Germicidal light irradiation. The nanotube with the highest aspect ratio, geometric surface area factor and at% of tungsten exhibited the highest photocatalytic activity due to more photo-induced electron-hole pairs generated by the larger surface area and because WO3 improves charge separation, reduces charge carrier OPEN ACCESS Materials 2015, 8 2140 recombination and increases charge carrier lifetime via accumulation of electrons and holes in the two different metal oxide semiconductor components.
منابع مشابه
Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach
Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant t...
متن کاملAg Nanoparticles Located on Three-Dimensional Pine Tree-Like Hierarchical TiO2 Nanotube Array Films as High-Efficiency Plasmonic Photocatalysts
High specific surface area three-dimensional pine tree-like hierarchical TiO2 nanotube array films loaded with Ag nanoparticles were successfully prepared by one-step hydrothermal reaction combining with simple and feasible magnetron sputtering. The composite Ag/TiO2-branched nanotube arrays show outstanding photocatalytic property, which is attributed to the boost of plasmonic enhancement carr...
متن کاملEnhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film
Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while de...
متن کاملPhotocatalytic energy storage ability of TiO2-WO3 composite prepared by wet-chemical technique.
TiO2-WO3 hybrid photocatalysts were prepared using wet-chemical technique, and their energy storage performance was characterized by electrochemical galvanostatic method. TiO2 powder was coupled with WO3 powder, which was used as electron pool and the reductive energy could be stored in. As a result, the prepared TiO2-WO3 had good energy storage ability while pure TiO2 showed no capacity and pu...
متن کاملPreparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the...
متن کامل